SERVICENOW TALENT DIFFERENCE

|

article image
We specialize in providing onsite ServiceNow professionals who can augment your ServiceNow capabilities. For over 45 years, Solugenix Corporation has been providing solutions in the ITSM domain to some of America’s leading companies. We understand that IT Service Management (ITSM) has become the focal point for enhancing IT value and impact to an organization’s core business. We bring our decades of Service Management experience to enhance your ServiceNow talent.

Spotlight

Tanium

Tanium gives the world’s largest enterprises and government organizations the unique power to secure, control, and manage millions of endpoints across the enterprise within seconds. Serving as the “central nervous system” for enterprises, Tanium empowers security and IT operations teams to ask questions about the state of every endpoint across the enterprise in plain English, retrieve data on their current and historical state, and execute change as necessary, all within seconds.

OTHER ARTICLES

What Makes an Application “Modern” Anyway?

Article | August 9, 2020

Just because something is labeled a “thing,” in this case DevOps, doesn’t mean that an organization is doing anything modern in its application development practice.Many people will think that technology decision points drive the “modernization” of applications. To be sure, technology plays a key role, but I prefer to think of application modernization as a three-legged stool.

Read More

THE FUTURE IS BOTH AUTOMATED AND INTELLIGENT

Article | August 9, 2020

Intelligent Automation (IA) is one of the trending buzzwords of our times. What makes automation smart? Is it new? Why the renewed focus? Bill Gates believed automation to be a double-edged sword when he said: “Automation applied to an efficient operation will magnify the efficiency. … Automation applied to an inefficient operation will magnify the inefficiency.” IA lies at the intersection of robotics, artificial intelligence (AI) and business process management (BPM). But before you think HAL from 2001: A Space Odyssey, J.A.R.V.I.S. from Iron Man or Terminator 2: Judgment Day scenarios, first, a little context. IA is not new; automated manual processes have been in existence since the dawn of the Industrial Revolution. It enabled speeding up go-to-market, reduced errors and improved efficiencies. Over time, automation made its way into software development, quality assurance processes, manufacturing, finance, health care and all aspects of daily life. “Intelligent” automation backed by robotics, AI and BPM creates smarter business processes and workflows that can incrementally think, learn and adapt as they go — for instance, processing millions of documents and applications in a day, finding errors and suggesting fixes or recommendations. What Intelligent Automation Does, Humans Can’t IA enables the automation of knowledge work by mimicking human workers’ capabilities. It includes four main capabilities: vision, execution, language, and thinking and learning. Each of these capabilities combines different technologies that are used as stand-alone or in combination to complement each other. One oft-quoted IA example is fraud detection and prevention in the BFSI sector. Robotic process automation (RPA) optimizes the speed and accuracy of the fraud identification process. Since RPA can go through months’ worth of data in a matter of hours and throws up exceptions, teams cannot keep up with the speed and scale needed to resolve the issues flagged. However, speed and efficiency are of the essence where fraud management is concerned. The answer lies in AI and BPM coupled with RPA. IA can streamline the process end-to-end. Pascal Bornet notes in his book, Intelligent Automation, that IA can help improve the overall automation rate to nearly 80%, and it can help improve the time to solve a fraud incident and obtain clients’ refunds by 50%. While RPA provides excellent benefits and quick solutions, cognitive technologies offer long-term value for businesses, employees and customers. IA And Digital Transformation IA adoption is growing swiftly across the enterprise, being fast adopted by more than 50% of the world’s largest companies. Its benefits are relevant to the majority of business processes. For example: • Industrial systems that sense and adapt based on rules. • Chatbots that learn from customer interactions to improve engagement. • Sales and marketing systems that predict buyer journeys and identify leads The Future Of Work: Bitter Or Better There is much speculation when it comes to IA and the future of work. The main contention is that robots will take away jobs from humans. My argument is that, while it will cause role changes, it doesn’t necessarily mean job losses. The Industrial Revolution helped automate “blue-collar” jobs in manufacturing and agriculture. Similarly, IA will automate many white-collar jobs that are tedious and tiring. A recent IBM report shows that 90% of executives in firms where IA is being used believe it creates higher-value work for employees. So, no, we will not be living in a dystopic world controlled by bots running amok! IA means better roles, the elimination of laborious tasks and improvements in employee well-being. The Promise Of The Better Life In 2018 alone, over $5 trillion (6% of global GDP) was lost due to fraud. Medical errors in the U.S. incur an estimated economic value of almost $1 trillion — and 86% of those mistakes are administrative. A 2017 Medliminal Healthcare Solutions study found that 80% of U.S. medical billings contain at least minor errors — creating unnecessary annual health care spending of $68 billion. The World Economic Forum cited an ILO report that “estimates that the annual cost to the global economy from accidents and work-related diseases alone is a staggering $3 trillion.” Now, let us imagine we can save $5 trillion globally through the deployment of IA. It means: • Global budgets allocated to education could more than double. • Global healthcare budgets could be increased by more than 70%. • Environmental investments could be multiplied almost twentyfold. Transitioning To Intelligent Automation However, adopting IA is not like flipping a switch. There are some key steps an organization must experience in its bid to be automating intelligently. • Planning. For the successful adoption of IA, business leaders must understand the relationship between people and machines. Enterprises must plan so as not to disrupt other parts of the business and integrate IA seamlessly into the existing programs. Instead of adopting IA across the processes, identify where it delivers the most value. Automating broken processes will not fix the problem. IA will only reap rewards on stable and mature processes • Change management. IA is not easy to implement. There will be a great deal of resistance to adopting IA in your organizations. Designing a change management strategy, an execution road map, an enterprise operating model and key metrics for ROI will help your cause. Invite key stakeholders from the outset to ensure buy-in and train your employees to work in collaboration with IA. • Governance framework. Establishing a governance framework helps determine who will watch the watchmen. The bigger the role of IA in your organization, the more critical governance becomes. Designing a framework will help you monitor performance as well as define exceptions and errors. It is a recipe for disaster if you don’t have a command and control center to ensure IA is making the right choices. Even more reason for humans with industry expertise to still “have their jobs” and excel at them. Future Of Intelligent Automation The future of IA will direct businesses to a more adaptive model that is beneficial for business leaders to uncover higher value and employees to do more satisfactory and creative roles. Preparing for an intelligent future means adapting our technology, skills and education to fit the future of the workforce. What are we waiting for? Disclaimer – This article was 1st published on Forbes.comEnable GingerCannot connect to Ginger Check your internet connection or reload the browserDisable in this text fieldRephraseRephrase current sentenceEdit in Ginger

Read More
AI TECH

Real-time Object Detection in Video (with intro to Yolo v3)

Article | August 9, 2020

A few weeks ago, I created a Tensorflow model that would take an image of a street, break it down into regions, and - using a convolutional neural network - highlight areas of the image that contained vehicles, like cars and trucks. I called it an image classification AI, but what I had really created was an object detection and location program, following a typical convolutional method that has been used for decades - as far back as the seventies. By cutting up my input image into regions and passing each one into the network to get class predictions, I had created an algorithm that roughly locates classified objects. Other people have created programs that perform this operation frame by frame on real time video, allowing computer programs to draw boxes around recognised objects, understand what they are and track their motion through space. In this article, I’ll give an interesting introduction to object detection in real-time video. I’ll explain why this kind of artificial intelligence is important, how it works, and how you can implement your own system with Yolo V3. From there, you can build a huge variety of real time object tracking programs, and I’ve included links to further material too. Importance of real-time object detection Object detection, location and classification has really become a massive field in machine learning in the past decade, with GPUs and faster computers appearing on the market, which has allowed more computationally expensive deep learning nets to run heavy operations. Real time object detection in video is one such AI, and it has been used for a wide variety of purposes over the past few years. In surveillance, convolutional models have been trained on human facial data to recognise and identify faces. An AI can then analyse each frame of a video and locate recognised faces, classifying them with remarkable precision. Real-time object detection has also been used to measure traffic levels on heavily frequented streets. AIs can identify cars and count the number of vehicles in a scene, and then track that number over time, providing crucial information about congested roads. In wildlife, with enough training data a model can learn to spot and classify types of animals. For example, a great example was done with tracking racoons through a webcam, here. All you need is enough training images to build your own custom model, and such artificial intelligence programs are actively being used all around the world. Background to Yolo V3 Until about ten years ago, the technology required to perform real-time object tracking was not available to the general public. Fortunately for us, in 2021 there are many machine learning libraries available and practically anyone can get started with these amazing programs. Arguably the best object detection algorithms for amateurs - and often even professionals - is You Only Look Once, or YOLO. This collection of algorithms and datasets was created in the 2000s and became incredibly popular thanks to its impressive accuracy and speed, which lends it easily to live computer vision. My method for object detection and recognition I mentioned at the start of this article happens to be a fairly established technique. Traditional object recognition would split up each frame of a video into “regions”, flatten them into strings of pixel values, and pass them through a deep learning neural network one by one. The algorithm would then output a 0 to 1 value indicating the chance that the specific region has a recognized object - or rather, a part of a recognized object - within its bounds. Finally, the algorithm would output all the regions that were above a particular “certainty” threshold, and then it would compile adjacent regions into bounding boxes around recognized objects. Fairly straightforward, but when it comes down to the details, this algorithm isn’t exactly the best. Yolo V3 uses a different method to identify objects in real time video, and it’s this algorithm that gives it its desirable balance between speed and accuracy - allowing it to fairly accurately detect objects and draw bounding boxes around them at about thirty frames per second. Darknet-53 is Yolo’s latest Fully Convolutional Network, or FCN, and is packed with over a hundred convolutional layers. While traditional methods pass one region at a time through the algorithm, Darknet-53 takes the entire frame, flattening it before running the pixel values through 106 layers. They systematically split the image down into separate regions, predicting probability values for each one, before assembling connected regions to create “bounding boxes” around recognized objects. Coding Luckily for us there’s a really easy way we can implement YoloV3 in real time video simply with our webcams; effectively this program can be run on pretty much any computer with a webcam. You should note however that the library does prefer a fast computer to run at a good framerate. If you have a GPU it’s definitely worth using it! The way we’ll use YoloV3 is through a library called ImageAI. This library provides a ton of machine learning resources for image and video recognition, including YoloV3, meaning all we have to do is download the pre-trained weights for the standard YoloV3 model and set it to work with ImageAI. You can download the YoloV3 model here. Place this in your working directory. We’ll start with our imports as follows: import numpy as np import cv2 from imageai import Detection Of course, if you don’t have ImageAI, you can get it using “pip install imageai” on your command line or Python console, like normal. CV2 will be used to access your webcam and grab frames from it, so make sure any webcam settings on your device are set to default so access is allowed. Next, we need to load the deep learning model. This is a pre-trained, pre-weighted Keras model that can classify objects into about a hundred different categories and draw accurate bounding boxes around them. As mentioned before, it uses the Darknet model. Let’s load it in: modelpath = "path/yolo.h5" yolo = Detection.ObjectDetection() yolo.setModelTypeAsYOLOv3() yolo.setModelPath(modelpath) yolo.loadModel() All we’re doing here is creating a model and loading in the Keras h5 file to get it started with the pre-built network - fairly self-explanatory. Then, we’ll use CV2 to access the webcam as a camera object and define its parameters so we can get those frames that are needed for object detection: cam = cv2.VideoCapture(0) cam.set(cv2.CAP_PROP_FRAME_WIDTH, 1300) cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 1500) You’ll need to set the 0 in cv2.VideCapture(0) to 1 if you’re using a front webcam, or if your webcam isn’t showing up with 0 as the setting. Great, so we have imported everything, loaded in our model and set up a camera object with CV2. We now need to create a run loop: while True: ret, img = cam.read() This will allow us to get the next immediate frame from the webcam as an image. Our program doesn’t run at a set framerate; it’ll go as fast as your processor/camera will allow. Next, we need to get an output image with bounding boxes drawn around the detected and classified objects, and it’ll also be handy to get some print-out lines of what the model is seeing: img, preds = yolo.detectCustomObjectsFromImage(input_image=img, custom_objects=None, input_type="array", output_type="array", minimum_percentage_probability=70, display_percentage_probability=False, display_object_name=True) As you can see, we’re just using the model to predict the objects and output an annotated image. You can play around with the minimum_percentage_probability to see what margin of confidence you want the model to classify objects with, and if you want to see the confidence percentages on the screen, set display_percentage_probability to True. To wrap the loop up, we’ll just show the annotated images, and close the program if the user wants to exit: cv2.imshow("", img) if (cv2.waitKey(1) & 0xFF == ord("q")) or (cv2.waitKey(1)==27): break Last thing we need to do outside the loop is to shut the camera object; cam.release() And that’s it! It’s really that simple to use real time object detection in video. If you run the program, you’ll see a window open that displays annotated frames from your webcam, with bounding boxes displayed around classified objects. Obviously we’re using a pre-built model, but many applications make use of YoloV3’s standard classification network, and there are plenty of options with ImageAI to train the model on custom datasets so it can recognize objects outside of the standard categories. Thus, you’re not sacrificing much by using ImageAI. Good luck with your projects if you choose to use this code! Conclusion Yolo V3 is a great algorithm for object detection that can detect a multitude of objects with impressive speed and accuracy, making it ideal for video feeds as we showed on the examples aboves. Yolo v3 is important but it’s true power comes when combined with other algorithms that can help it process information faster, or even increasing the number of detected objects. Similar algorithms to these are used today in the industry and have been perfected over the years. Today self-driving cars for example will use techniques similar to those described in this article, together with lane recognition algorithms and bird view to map the surroundings of a car and pass that information to the pilot system, which then will decide the best course of action.

Read More

Culture of Innovation and Collaboration: Hybrid Cloud, Privacy in AI and Data Caching

Article | August 9, 2020

Red Hat is continually innovating and part of that innovation includes researching and striving to solve the problems our customers face. That innovation is driven through the Office of the CTO and includes OpenShift, OpenShift Container Storage and use cases such as the hybrid cloud, privacy concerns in AI, and data caching. We recently interviewed Hugh Brock, research director for the office of the CTO, here at Red Hat about these very topics.

Read More

Spotlight

Tanium

Tanium gives the world’s largest enterprises and government organizations the unique power to secure, control, and manage millions of endpoints across the enterprise within seconds. Serving as the “central nervous system” for enterprises, Tanium empowers security and IT operations teams to ask questions about the state of every endpoint across the enterprise in plain English, retrieve data on their current and historical state, and execute change as necessary, all within seconds.

Events